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ABSTRACT 
An adaptive grid solution method is described for computing the time accurate solution of an unsteady 
flow problem. The solution method consists of three parts: a grid point redistribution method; an unsteady 
Euler equation solver; and a temporal coupling routine that links the dynamic grid to the flow solver. The 
grid movement technique is a direct curve by curve method containing grid controls that generate a smooth 
grid that resolves the severe solution gradients and the sharp transitions in the solution gradients. By 
design, the temporal coupling procedure provides a grid that does not lag the solution in time. The adaptive 
solution method is tested by computing the unsteady inviscid solutions for a one-dimensional shock tube 
and a two-dimensional shock vortex interaction. Quantitative comparisons are made between the adaptive 
solutions, theoretical solutions and numerical solutions computed on stationary grids. Test results 
demonstrate the good temporal tracking of the solution by the adaptive grid, and the ability of the adaptive 
method to capture an unsteady solution of comparable accuracy to that computed on a stationary grid 
containing significantly more grid points than used in the adaptive grid. 
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INTRODUCTION 

Solution strategies that use adaptive grids have become an increasingly important tool in 
computational fluid dynamics. A wide variety of methods have been proposed in recent years 
for solving steady and unsteady problems1-15. A distinguishing feature in many adaptive methods 
is the temporal coupling of the adaptive grid to the numerical flow solver. To compute a time 
accurate adaptive solution, one should use5 an evolving grid that accurately tracks the severe 
solution behaviour in space and time in such a way that the solution will not escape its provided 
grid resolution in the course of a time step. 

Solution adaptive methods can generally be classified as either static or dynamic based on 
the type of temporal coupling used to link the adaptive grid to the numerical flow solver. 
Dynamic adaptive methods continuously move the grid in space and time. These methods are 
typically implemented by directly computing the grid velocity or determining the new grid as 
part of the solution at the forward time step. This approach has the potential for producing a 
grid with a very tight solution tracking capability because the new grid provides resolution in 
the regions over which the severe solution behaviour occurs during the forward time step; that 
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is, the grid does not lag the solution in time. However, dynamic methods can be difficult to 
implement and can lead to folded grids if the unknown grid velocity, or new grid, is not computed 
accurately. 

In static adaptive methods the grid moves, or is adapted, only at discrete time levels. The 
new grid is determined separately from the solution using solution data at the current, and 
possibly previous, time level(s). In the flow solver, the time dependence of the grid is ignored, 
or treated with grid velocity terms computed with a simple backward difference in time. Static 
adaptive methods can make use of a broad range of reliable grid generation techniques and 
thus generally do not suffer from the grid singularity problems associated with the dynamic 
methods. However, static adaptive methods typically result in a grid that lags the solution in 
time because the new grid is formed using only historical solution data. Hence, these methods 
generally do not contain adequate temporal tracking to be applicable in time accurate solutions 
of unsteady problems. Accordingly, static adaptive methods are usually applied in time 
asymptotic solutions where only a few adaptations are needed. 

In this paper we describe a temporal coupling method for linking an adaptive grid to a 
stationary grid flow solver that provides the temporal tracking ability of a dynamic adaptive 
method and the robustness and stability of a static adaptive method. The procedure treats the 
time integration of the solution as a series of initial value problems over short intervals in which: 
(1), a provisional solution is advanced on the existing grid; (2), a new grid is formed from the 
provisional solution data; (3), the solution data are interpolated from the old grid to the new 
grid; and (4), the solution is recomputed on the new grid. By successively repeating the process 
the solution and grid are advanced through time to the desired final time level. 

The chief advantages of our procedure are accurate temporal tracking of the severe solution 
behaviour and flexibility. The good temporal tracking occurs because the new grid is formed 
from solution data forward in time and thus provides good resolution in the regions where it 
is needed during the forward time integration. The flexibility provided by our method comes 
from being able to decouple the grid generation from the flow solver being used. In particular, 
using the static remesh step to transfer the solution between grids avoids having to incorporate 
grid velocity terms into the flow solver, and thereby allows using a wide range of available flow 
solvers. To be cost effective, we compute the provisional solution on a coarse grid. 

The temporal coupling method described here bears a philosophical similarity to one 
presented8, but does not require the flow solver to have a grid velocity capability. However, if 
the flow solver had a grid velocity capability, our method would provide a means to efficiently 
and accurately compute the grid velocity. Although the temporal coupling is demonstrated only 
for inviscid flows computed on structured grids, the same coupling is demonstrated only for 
inviscid flows computed on structured grids, the same technique should work for viscous flows 
and for solutions computed on unstructured meshes. 

In addition to the temporal coupling method a practical grid point redistribution scheme is 
described. The grid movement sceme is a direct curve by curve method that is a blend of 
techniques developed by ourselves3,5,9,13,14 and other authors1,6,7,10. Here, particular emphasis 
is placed on a technique that improves the ability to adapt the grid to multiple solution features 
that merge and then separate during the course of computing the solution. 

In the following sections we describe in order, the adaptive grid movement scheme, the 
unsteady Euler equation solver, the temporal coupling method, and last, results of numerical 
tests. The sections covering the grid movement scheme and the temporal coupling method 
contain detailed discussions of the respective techniques. The flow solver is described only briefly. 
The feasibility of our adaptive solution method is demonstrated on two problems. The results 
of a series of numerical tests for an unsteady one-dimensional shock tube are described to provide 
a benchmark and to demonstrate a basic ability to accurately track a solution through time. 
The ability to accurately perform multidimensional grid adaptation for time dependent problems 
is demonstrated by computing the unsteady two-dimensional inviscid flow field for a shock 
vortex interaction problem. 
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ADAPTIVE GRID 
The adaptive grid method described here utilizes a surface grid lying on a monitor surface to 
identify regions where finer grid resolution is needed. The monitor surface, ψ(xi,yi), is a smooth 
piecewise linear surface positioned over the physical domain. The monitor surface is typically 
defined as a linear combination of one or more of the variables that drives the physics of the 
problem. Hence, regions in which the solution has a sharp gradient, or a sharp transition between 
vastly different gradients, are represented in the monitor surface as, respectively, sharp gradients 
and sharp bends. The adaptive procedure repositions the nodes of the surface grid on the monitor 
surface to better resolve the geometric features of the monitor surface. At the completion of the 
node redistribution process the surface grid is projected down to the physical domain to yield 
the new grid. Repositioning the grid points to more accurately represent the physics of the 
governing problem should reduce the overall error in the numerical solution. 

In two-dimensional problems, the nodes of the surface grid are redistributed on a curve by 
curve basis5. The order in which the curves are adapted is based on directional sweeps. The 
coordinate curves of the surface grid lying in one direction are operated on, followed by the 
same process for the curves in the opposite direction. Along each coordinate curve the mechanics 
of redistributing the grid points are the same as for a one-dimensional problem. 

Equidistribution statement 
Along each coordinate curve the grid points are repositioned to equally distribute a positive 

weight function over the curve. That is, the nodes are repositioned to satisfy the equidistribution 
statement: 

wi+1/2∆si=A∆ξi=constant (1) 
where wi+1/2=½(wi+wi+1), wi=w(si), ∆s i=s i + 1 — si, si is the arc length to node i along the 
current curve on the monitor surface, A is a constant to be determined, ∆ξ,-= 1, and the ξi are 
the uniformly spaced locations in computational space of the new grid points that satisfy the 
equidistribution condition. As can be seen in (1), the node redistribution is driven by the balancing 
of the weight function against the interval arc length. Notice that as the weight function increases 
(descreases) in value the associated interval on the monitor surface must shrink (expand). 

Weight function 
The basic form of wi used in (1) is: 

wi= l + C|Kn,| (2) 
where C is a constant and Knt is the normal curvature of the monitor surface at node i. The 
weight function in (2) will result in a surface grid in which, along each curve, the nodes have a 
uniform arc length spacing that is locally deviated from in regions of high normal curvature. 
When projected down to the physical domain, the points of the surface grid having a uniform 
arc length spacing will resolve the gradient regions and provide a uniform spacing in the physical 
domain in regions away from severe solution behaviour. The nodes of the surface grid in the 
regions of large Kn will reside in the transition regions of the solution where the solution gradients 
are rapidly changing in value, and thereby help provide a smooth change in the grid cell size 
between the regions of high and low cell density (i.e., regions of high and low solution gradients, 
respectively). The normal curvature resolves the sharp bends in the monitor surface because it 
tracks the changes in the orientation of a plane tangent to the minotor surface3. The normal 
curvature is computed from: 

where P = (x,ψ) is the position vector for the nodes on the monitor surface, x = (x,y) is the 
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position vector of the node in the physical domain, is the unit vector normal to both the 
curve and the surface tangent plane, and ξ and n are the coordinate directions of the curvilinear 
coordinate curves on the monitor surface (see Figure 1). Before assembling the weight function, 
a one-dimensional smoothing operation is applied to the Kn, to eliminate abrupt jumps that can 
occur in the computed values. The coefficient C in (2) is computed based on the prescribed 
percentage of the total number of grid points,/, that are to be attributed to curvature clustering1: 

The function for computing C includes a 'switch function' that dynamically adjusts the value 
of C based on the ratio of the arc length of the curve on the monitor surface to its shortest 
possible length; if the ratio is near one, then normal curvature clustering is not needed and 
C≈0 3 . Some simple guidelines for prescribing/are given in Reference 5. For problems in which 
the boundaries of the physical domain contain complex shapes that also need fine grid resolution 
(i.e., adaptation to the boundary geometry), the weight function in (2) can be modified to include 
the geodesic curvature of the coordinate curves on the monitor surface and thereby provide 
additional node concentration in regions where the boundaries contain sharp bends3. 

It should be noted that the weight function in (2) can result in a grid with very small grid 
cells. A grid in which the cells are too small can lead to prohibitively expensive solutions when 
using an explicit flow solver due to the Courant-Freidrichs-Lewy (CFL) constraint on the 
admissible time step. Techniques to include a minimum grid cell size control in the weight 
function for a curve by curve scheme have been described5-7,14. To maintain simplicity, we do 
not utilize a grid cell size control in this study because such controls typically require parameters 
that are based on numerical tests and thus require additional user interaction. In addition, in 
viscous flow problems containing thin boundary layers such a grid control may not be desirable. 
For problems in which the CFL constraint is too severe, it may be necessary to use a flow solver 
that employs an implicit time integration method when computing the solution on an adaptive 
grid. 

Grid point redistribution algorithm 
After determining the Wi, the new position vectors Q are computed from the old position 

vectors P using a piecewise linear transformation obtained from a series of integrations of (1) 
over portions of the curve1,3,5. Thus, on curve i the Qi,j are computed as: 
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where the index m=m(j) is the interval that brackets ξj, or ξ(sm) ξj<ξ(sm+1). In the above, 
the ξ(sm) are the arbitrarily spaced locations in computational space of the old grid points. The 
value of ξ(sm) is obtained by first integrating (with a trapezoidal rule) (1) over the curve to 
eliminate A, then integrating only to point m and inserting boundary values for ξ: 

where 

To obtain the positions of the new grid in the physical domain the cartesian coordinates are 
extracted from the new positions vectors in (5). With respect to implementing the above 
redistribution algorithm, note that (5)-(7) can be combined to obtain an algorithm that is 
mathematically equivalent but computationally more efficient (see Eiseman3 for details). 

Active passive phases 
A grid smoothing operation is included in our grid movement scheme to alleviate the grid 

skewness and unsmooth change in node cell spacing that can occur with a curve by curve 
adaptive method when the adaptive data contains complex geometries or very sharp gradients. 
The grid smoothing is interwoven with the node redistribution by splitting the mode movement 
within each directional sweep into active and passive phases5,14. In the active phase, the nodes 
are redistributed along each curve in the current direction using the previously described method. 
In the passive phase, a smoothing operation is applied to the grid to remove any wiggles and 
abrupt changes in spacing created by the active phase. For a two-dimensional grid, the relaxation 
formula is: 

where R and Q are respectively the new and old position vector values at the grid point. Along 
the boundaries the relaxation scheme employs a ghost point for the neighbouring node that lies 
outside of the physical domain. The ghost point is computed by extending the curve transverse 
to the boundary, beyond the boundary along a trajectory with slope equal to that of the transverse 
curve coming into its first interior point, for a distance that is equal to the distance between the 
first interior point and the point where the extended transverse curve intersects the tangent 
vector of the boundary. At the four corner points of the grid the position vector is not relaxed. 
For problems in which the shape of the boundary is not to be modified while computing the 
solution, then an additional procedure is required to ensure that the grid point movement is 
tangent to the boundary. In this case, we define the boundary curve by a very fine piecewise 
linear representation that is never modified. After computing the new (relaxed) grid point location 
using (8), the (local) position vector is projected onto the fine representation of the boundary 
to obtain the final location. For further details on treating the boundaries see Reference 14. 

The smoothing operation is typically applied 3 to 5 times to the grid in each passive phase, 
depending on the complexity of the problem at hand. It should be emphasized that the smoothing 
operation is applied only to the physical domain components of the position vector (i.e., x). 
The monitor surface values are only updated at the end of each passive phase, after all the 
smoothing is completed. Simultaneously updating the monitor surface values as the new grid 
positions are computed with (8) is too diffusive of the ψ values when multiple applications of 
the relaxation scheme is employed in each passive phase. The new ψ values are computed from 
bilinear interpolation of the ψ values at the four nodes that form the cell in the old grid that 
encompasses the new grid point. The required cell in the old grid is determined with a 
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two-dimensional search procedure that is a combination of methods9,16. The parameters used 
to perform the bilinear interpolation are computed from the (x,y) coordinates of the new grid 
point and the four nodes that form the old grid cell using a standard Newton-Raphson method. 

Vector function monitor surface 
From experience we have learned that special care must be exercised in defining the monitor 

surface in applications where the grid is to track multiple solution features that merge during 
the course of computing the solution. In such cases, the simplest approach would be to treat 
the monitor surface as a scalar function defined as the linear combination of the different solution 
features to be tracked. However, this approach can result in very poor grid resolution in the 
region of merger due to the gradients of the tracked solution features cancelling each other. The 
gradient cancellation can be seen in the arc length computations. For a problem in which two 
solution features are being tracked, then the differential arc length for a curve on the monitor 
surface is 

ds=||dP|| = (dx .dx+dψ2)1/2 = (dx .dx+[dψ1+dψ2]2)1/2 (9) 
That dψ1 can cancel dψ2 is easily seen in (9). 

To accurately adapt the grid to multiple solution features that merge in time requires 
that the monitor surface be defined as a vector function rather than a scalar function. With 
the monitor surface defined as a vector function, the gradients of the respective components 
cannot cancel when the solution features merge. Thus good grid resolution is mainted in the 
region of merger. The vector function monitor surface is defined as an N dimension vector 
ψ=(ψi(x),...,ψN(x)) where ψk is one of the N features of the solution that is to be tracked, or 
resolved. The ψk are scalar functions and are typically formed from a single variable or property 
of the solution. The monitor surface is positioned over the physical domain and the ψk are 
mutually orthogonal. The position vector for a point of the surface grid on the monitor surface 
is P=(x,ψI(x),...,ψN(x)). Thus, for a problem being solved on a M dimensional physical 
domain in which N solution features are to be tracked, the scalar function monitor surface is a 
M dimensional surface embedded in a M +1 dimensional space where as the vector function 
monitor surface is a M dimensional surface embedded in a M+N dimensional space. Repeating 
(9) for the vector function monitor surface yields: 

ds = (dx .dx+dψ2+dψ2
2)1/2 (10) 

from which it can be seen that the contributions to the arc length of the individual solution 
features being tracked (i.e., dψ2

i), cannot cancel. Figure 2 contains the scalar and vector function 
monitor surfaces for the case of two merging disturbances for a one-dimensional problem. For 
this example the scalar monitor surface is a one-dimensional surface in a two-dimensional space 
(i.e., planar curve) and the vector function monitor surface is a one-dimensional surface in a 
three-dimensional space (i.e., curve in space). Here, the distinction between the vector and scalar 
monitor surface is easily visualized. In addition, the improved grid resolution in the region of 
merger of the two solution features can be readily seen in the vector function monitor surface 
plot (Figure 2d). A similar comparison of scalar and vector function monitor surfaces for 
two-dimensional problems are contained in References 9 and 13. 

The process for adapting a grid to a vector function monitor surface is essentially the same 
as for a scalar function monitor surface. To ensure that the curvature properties used in the 
weight function are uniquely defined, the surface grid is projected onto each component of the 
vector monitor surface, ψk, to compute the normal curvature for the respective component. Thus 
at each node there will be a normal curvature value computed for each of the ψk components 
of the monitor surface. The normal curvature at node i for the kth component of the monitor 
surface, K(k)

n,, is computed using (3) where the position vector to be used is =(x,ψk(x)) and the 
associated arc length is computed along the curve projected onto component ψk, The 
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weight function used in the equidistribution statement is: 

where Ck is the curvature coefficient for ψk. Before assembling the weight function a 
one-dimensional smoothing operation is applied to the K(k)

ni values. The dynamic curvature 
coefficient for each component of ψ, Ck,, is computed in an analogous manner to that for a 
scalar monitor surface, where the percentage of the grid points to be attributed to curvature 
attraction for the kth solution feature is fk. Further details on treating the monitor surface as a 
vector function are contained in Reference 9. 

Summary of grid movement scheme 
Before starting the grid movement, the relaxation formula in (8) is applied three times to the 

ψ(x) values (not the x positions) to ensure that the monitor surface is smooth. Along the 
boundaries, the ψ value of the ghost point that lies outside of the physical domain is set equal 
to the ψ value at the first interior point on the same transverse curve (i.e., reflection boundary 
condition). For a vector monitor surface, the ψk are smoothed individually. 

After smoothing the monitor surface, the new grid is generated with two iteration cycles of 
the following: 
(1) perform the active phase for each curve in the first direction: 

(a) compute si, Kni, etc. at each node on the current curve; 
(b) form wi for each node; 
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(c) compute the Qi,j locations that satisfy the equidistribution statement by redistributing 
the points on the monitor surface along the current curve; 

(2) perform the passive phase by applying the smoothing operator to the grid to yield Ri,f; 
(3) repeat steps (1) and (2) for the opposite direction. 
Numerical tests have demonstrated that the grid typically settles in to a final configuration 
within a few iterations. Thus the grid movement is stopped after only two global iteration cycles, 
rather than iterating until the grid has converged. The slightly improved grid resolution that 
can be obtained with a more precise placement of the grid points typically does not offset the 
additional expense of computing such a node placement. The CPU time for the above grid 
generation algorithm is about 120μsec per grid point per global iteration cycle on a CRAY2. 

THE EULER EQUATION SOLVER 
The flow equation solver used in this study is an 'off the shelf finite volume, shock capturing 
code for solving the unsteady two dimensional Euler equations for idealized compressible gas 
flow9. The solution is computed using a characteristic based method that captures crisp (almost) 
monotone shock profiles (0(Ax2)). The solution is integrated in a time accurate manner with a 
classical two step modified Euler explicit time integration scheme that is nominally 0(∆t2) for 
a linear problem. The flow solver is designed for use on a stationary (i.e., time independent) grid 
and has not been altered to include grid velocity terms. The CPU time for the flow solver is 
about 80μsec per grid point per time step on a CRAY2. 

TEMPORAL COUPLING 
Our temporal coupling method treats the time integration of the solution from T=0 to T=Tf 
as a series of initial value problems over short time intervals. Conceptually, the steps required 
to perform a single cycle of the process can be grouped into four stages. In the first stage, a 
provisional solution is advanced forward in time for a time interval T. Next, the new adaptive 
grid for this time interval is generated using the data collected from the provisional solution 
stage. In the third stage the initial solution is transferred from the old grid to the new grid (i.e., 
a static remesh). In the last stage, the solution is recomputed on the new grid over the time 
interval T. The process is repeated until the solution has been advanced to the desired final time 
level. 

Each cycle of our temporal coupling algorithm begins at a time level T with an existing 
adaptive grid (X) and solution (q(X, T)), and ends with a new adaptive grid and solution at a 
time level T + T . In keeping with our approach of treating the time integration as a series of 
initial value problems, we refer to X and q(X, T) as the initial condition for the cycle starting 
at time T. Note that in general X and q(X, T) are not the same as the initial condition of the 
physical problem that is specified at T=0. In addition, the new adaptive grid and solution 
determined at time level T+x will become the initial condition for the next cycle of the algorithm, 
in which the grid and solution are advanced in time for another short time interval. 

To be cost effective, the solution in the provisonal stage of the temporal coupling algorithm 
is computed on a coarse grid defined from the existing adaptive grid (X). For many applications, 
an adequate estimate of the adaptive data needed to generate the new grid can be obtained in 
this manner. The larger grid cell size of the coarse grid allows using a larger time step based 
on the CFL constraint. The combination of the fewer grid points and larger time step makes 
the CPU time incurred in computing the provisional solution small in comparison to that used 
to recompute the solution on the full grid. In the two-dimensional shock vortex solutions 
described below, the ratio of the CPU time of the provisional solution step (STEP 1-6) to that 
of the full grid solution stage (STEP 9) is about 1:7. In three-dimensional problems, this ratio 
would be even smaller. 
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In the following discussion, the temporal coupling algorithm is divided into ten steps in order 
to provide a precise description of a single cycle of our algorithm. 

STEP 1: choose a time interval x 
In some problems it is possible to specify the value of x. However, it is usually simpler to 

specify the number of times steps, p, to be used in the forward time integration of the provisional 
solution. Thus T=Σp

k=1∆tk is the admissible time step determined by the flow solver for 
computing a time accurate solution. In the present study we (arbitrarily) set p=10. Although 
this may seem like a large value for p, the CFL constraint of the explicit time integration in the 
Euler equation solver results in the time interval x being quite small. In the case that an implicit 
flow solver were being used, we would set the value of p to be much smaller. 

STEP 2: obtain a coarse grid from the full grid 

The coarse grid, XC, is obtained by deleting every second coordinate curve in each direction 
in X. Note that the metrics, jacobians, etc. of XC must be computed. 

STEP 3: transfer initial condition to the coarse grid 
The initial condition on the coarse grid, q(XC,T), is computed from q(X,T) using local bilinear 

interpolation. Note that the (i,j) locations of the points in X used to interpolate the values onto 
XC are known a priori due to the manner in which XC is defined. The localized coordinates 
used to perform the bilinear interpolation can be computed very efficiently using a standard 
Newton-Raphson method. (This interpolation step is required because in our flow solver the 
solution is located at the center of the grid cell. For flow solvers in which the solution and grid 
vertex point coincide, the solution on the coarse grid could be extracted directly from the full 
grid solution without interpolation.) 

STEP 4: compute provisional solution over x on the coarse grid 
A provisional solution is computed up to T+x by integrating q(XC,T) forward in a time 

accurate manner. After each time step a monitor surface, ψi, is computed and stored in a running 
sum. A ψi is also formed from q(XC,T) to enhance the temporal smoothness of the grid. 

STEP 5: form a monitor surface over x 
The p+1 monitor surfaces computed in STEP 4 are averaged to yield a composite monitor 

surface on the coarse grid, ψ*(XC). Thus, ψ* = (l/(p+1))Σp+1
i=1 ψi. 

STEP 6: transfer monitor surface to the full grid 
The monitor surface on the full grid, ψ*(X), is computed from ψ*(XC) using local bilinear 

interpolation. Again, the (i,j) locations of the points in XC used to interpolate the values onto 
X are known a priori due to the manner in which XC is defined. 

STEP 7: adapt the grid 
The new grid, X*, is generated using two cycles of the curve by curve scheme described above. 

After generating X*, its metrics, etc. must also be computed. 

STEP 8: transfer solution data to the new grid 
A conservative rezoning method is used to interpolate the old initial condition q(X,T) onto 

X* to determine the new initial condition q(X*,T). By using a conservative rezoning method 
the conservation properties of the solution will still be intact after the interpolation onto the 
new grid. Letting q represent the solution vector, then in each cell of the new grid X*, q(X*,T) 
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is computed from q(X, T) as: 

where qnew is q at the centre of the new grid cell, Anew is the area of the new grid cell, Ao
m is the 

fractional area of the old grid cell m that lies in the new grid cell, q°m is q at the centre of the 
old grid cell m, ∆r is the local position vector within the old grid cell m, and is a volume 
averaged estimate of the gradient of q within cell m. The gradient contains a 'Van Leer' like 
limiter function so that the interpolation on to the new grid does not induce new extrema into 
the solution. The gradient terms are computed as described in Reference 17 and the summation 
of the old grid cell contributions to each new grid cell is computed18. The interpolation is second 
order accurate in regions where the flow field is smooth, but is only first order accurate where 
there is an abrupt change in the solution (e.g., a shock wave). If the flow solver being used had 
a grid velocity capability, then the solution interpolation performed in this step would be replaced 
with computing the grid velocity terms. 

STEP 9: recompute solution over x on the new grid 
The new initial condition on the new grid, q(X*, T), is integrated forward in time to yield 

q(X*,T+t') where t ' = 0 . 9 5 t to ensure the solution does not outrun its provided resolution. 

STEP 10: go to STEP 1 
The solution is marched forward through time to the desired final time level Tf by successively 

repeating the procedure. 
To achieve additional temporal accuracy in the solution, a sub-iteration cycle can be performed 

on STEP 1-7 before advancing the solution to the next time level. The additional accuracy results 
because with each pass through the iteration cycle, the grid more accurately represents the 
evolving solution and hence a more accurate solution can be computed on it. However, the 
increased accuracy occurs at the expense of additional computational effort. Performing such 
an iteration cycle results15 in a 'strong temporal coupling'. In fact, its limit represents an implicit 
coupling of the grid and the solution. In the present study we do not use the sub-iteration cycle. In 
previous numerical tests with the shock tube problem described below, the slight improvement 
in solution accuracy achieved with the sub-iteration cycle did not justify the additional expense14. 

It should be emphasized that if a high degree of accuracy is required in the solution, then the 
static remesh in STEP 8 should be performed with the second order conservative rezoning 
method. In previous studies, we have tested using a bilinear interpolation method and a first 
order conservative rezoning method for performing the static remesh14. Bilinear interpolation 
is an attractive interpolation method because it does not induce oscillations into the solution, 
is simple to implement in a computationally efficient manner for two dimensional problems, 
and its extension to three-dimensional problems should be straight forward. However, bilinear 
interpolation consistently resulted in an 0(1%) error in the location of the captured shock waves. 
The first order conservative rezoning method correctly captured the shock locations, but was 
rather diffusive in regions away from the adaptive resolution. The second order conservative 
rezoning method overcomes the solution accuracy limitations observed with the simpler 
interpolation methods and thus is the method used in this study. However, the improved solution 
accuracy requires additional human effort. A conservative rezoning method is somewhat difficult 
to implement because the intersections of cell faces must be computed; its extension to 
three-dimensional problems could be complicated. In addition, the computer implementation of 
the rezoning algorithm must be very efficient because in the adaptive context the solution data 
is transferred between successive grids a large number of times. For three-dimensional problems, 
and two-dimensional problems containing complex geometries, it may be advisable to use either 
a higher order monotone interpolation method19, or to employ a flow solver with a grid velocity 
capability. 
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One last note pertaining to the temporal coupling algorithm is how to treat the case T = 0 . 
This case requires special attention because the given grid may not properly resolve the given 
initial condition of the problem. To ensure we obtain a 'gentle start' on the problem, we generate 
an initial grid that is adapted to the given initial condition and (in some cases) reduce the value 
of t, or p, on the first few cycles of the 10 step routine. The initial grid for the gentle start is 
generated using the sub-iteration cycle on STEP 1-7 described above for increasing the temporal 
accuracy of the grid. If a gentle start up cycle is not used then the first adaptation of the grid 
can be equivalent to an impulsive start and lead to severe grid generation difficulties. 

Unsteady shock tube 
A series of numerical tests have been performed for the unsteady shock tube problem described 

by Sod20. The key features of the solution are an expansion wave that propagates to the left 
and a shock wave, followed by a contact discontinuity, that propagates to the right. Results are 
presented for solutions computed on uniform stationary grids (100 x 2,200 x 2,400 x 2 cells) and 
on adaptive grids (100 x 2 cells). The adaptive grids are generated using the previously described 
two-dimensional adaptive method by applying the grid movement in only the axial direction. 
The monitor surface for the adaptive solutions is formed from the internal energy per unit mass 
because this variable undergoes a large change in value at all three waves in the solution. The 
time interval of the provisional solution stage (t) is prescribed to control how often the grid is 
regenerated. 

Illustrated in Figures 3 and 4 are the internal energy per unit mass for solutions computed on 
an uniform stationary grid (100 cells) and an adaptive grid in which the grid is generated using 
20 adaptations (i.e., t = 0 . 0 5 Tf in the temporal coupling routine). Comparing Figures 3 and 4, 
the adaptive solution has much closer agreement with the theoretical solution. Figure 5 illustrates 
the change in the grid positions through time. Figures 4 and 5 demonstrate graphically the 
accurate temporal and spatial tracking of the three waves in the solution provided by the adaptive 
solution method. In Figures 4 and 5, the concentration of grid points at the three waves occur 
over relatively broad regions because in our temporal coupling routine the solution is computed 
on the new grid for several time steps. For this test case, the full grid solution is computed for 
about 25 times steps on the new grid. 

Table 1 and Figure 6 contain quantitative comparisons of some solution properties for the 
shock tube studies. The shock wave propagation speed contained in Table 1 is computed from 
a least squares fit of the shock front location as a function of time. As can be seen from Table 1, 
the adaptive solution correctly captures the time dependent shock location, whereas in the 
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stationary grid solutions the shock is correctly captured only on the 400 cell grid. Illustrated in 
Figure 6 is the time history of the error in the numerical solutions listed in Table 1. The solution 
error is computed (at eleven time levels) as the L2 norm of the difference in the density for the 
theoretical and numerical solutions. From Figure 6, it can be seen that the adaptive solutions 
capture a more accurate solution than the stationary grid solutions. Also note in Figure 6 that 
adapting the grid more frequently generally results in a more accurate solution, due to the tighter 
tracking of the solution by the adaptive grid. However, adapting the grid more frequently also 
increases the diffusion of the solution that occurs in the static remesh step; if the grid is adapted 
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Solution 

Exact 
Stationary grid 

Adaptive grid 

Table J Comparison of shock tube solution properties 

Grid 
cells 

n/a 
100 
200 
400 
100 
100 
100 

No. of grid 
adaptations 

n/a 
n/a 
n/a 
n/a 

20 
100 
200 

Shock speed†, 
M5 

1.7522 
1.7636 
1.7539 
1.7520 
1.7520 
1.7521 
1.7521 

M5 error* 
(%) 

0.00 
0.65 
0.10 

-0.01 
-0 .01 
-0 .01 
-0.01 

†Propagation speed computed from least squares fit of shock wave location as a function of time. 
* Error = (Ms—Ms|theoretical)/Ms|theoretical. 

too many times the diffusion can offset the benefit of the improved solution tracking, as 
demonstrated by the adaptive solutions for the cases of 100 and 200 adaptations having essentially 
the same error. 

Altogether, the shock tube results demonstrate the basic ability of our adaptive method to 
accurately track a solution through time using a grid with a modest number of grid points. 

Shock vortex studies 
A shock vortex interaction problem provides a good test of a computational method because 

the solution exhibits severe gradients, the positions of which change with time. From a physical 
viewpoint, the interaction provides an idealized model for a wide variety of problems4,21,22. 

The shock vortex problem modelled here consists of an initially planar shock wave marching 
toward, and eventually over, a simple solid core vortex (Figure 7). The flow field is assumed to 
lie within a solid walled channel. The initial flow field consists of a planar shock located at x=0 
and a simple solid core vortex rotating counter clockwise centred at (x,y) = (0.65,0.0). To the 
left of the shock wave is the uniform (subsonic) flow field that would follow behind a propagating 
shock wave with a relative Mach number of Ms= 1.3, if there were no upstream disturbance. 
Ahead of the shock, the initial velocity field of the vortex is V = (0,u0(r)) where u0(r)=u0r/rc for 
0 r rc,u0{r)=u0rc/r for r rc and u0=0.3 is the maximum velocity in the vortex flow field, r 
is measured relative to the centre of the vortex, and rc=0.1 is the size of the vortex core. The 
density and pressure of the initial flow field of the vortex are determined by assuming the vortex 
is a constant enthalpy flow4,14. Along the channel walls the flow is assumed to be tangent to 
the boundary. At the inlet and outlet the flow variables are extrapolated from the neighbouring 
cell in the interior. 
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Illustrated in Figures 8a-8c are the grid and normalized pressure field ( =p/p-∞) for solutions 
computed on an 80 x 64 cell grid (80 cells in the axial direction) adapted to both the shock wave 
and the vortex. In the contour plots, ∆ =0.01 with є[0.50,1.10], and the contours at =0.5 
and 1.00 plotted as broken lines. 

From the pressure plots in Figure 8 the key features of a shock vortex interaction can be 
discerned. Before the shock reaches the vortex core (t=0.30), the shock wave is still essentially 
planar and the pressure field behind the shock wave is slightly anti-symmetric, with the pressure 
being slightly higher in the upper half of the channel. After the shock has passed over the vortex 
core (f=0.70), the shock front is curved and the pressure contours behind the shock contain 
regions of sharp curvature indicating the presence of an acoustic wave. As the shock has moved 
further down the channel (t=1.00), the curvature of the shock front becomes less pronounced 
because the upstream disturbance of the vortex flow field decrease. The vortex, which can be 
identified by the concentric pressure contours, has been convected down stream by the flow 
field following the shock wave and there is a noticeable gap between the shock wave and the 
vortex due to the shock propagating at a faster speed than the vortex. The acoustic wave is 
now more visible, being roughly cylindrical in shape and approximately centred on the drifting 
vortex. In addition, it can be seen that the acoustic wave is butting into the shock wave just 
above and below the channel centreline. 

In the grid plots, the concentrated band of grid lines that runs across the channel is due to 
the adaptation to the shock wave. The concentration of grid points near the channel centreline 
is due to the attraction to the vortex. The smooth nature of the grid in the high resolution areas 
can be seen in Figure 9 which contains an enlargement of the region near the vortex after the 
interaction has occurred (£=0.70). 

The adaptive grids are generated using a vector function monitor surface formed from the 
density field and the circulation about each grid point9,13. The density field clusters the grid 
points to the shock front because the density field is approximately constant everywhere except 
across the shock wave where a large jump in value occurs. The circulation is defined as Г=fV.dl 
and provides a means of concentrating grid points to the vortex core because Г is approximately 
zero everywhere except within the vortex core. 
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To provide a comparison for the adaptive results, solutions have been computed on a stationary 
grid with fine resolution (300 x 120) and very fine resolution (500 x 120). Overall, there is a good 
agreement between the adaptive and stationary grid solutions. For brevity, Figures 10 and 11 
illustrate the respective stationary grid solutions only at the last time level. 

Comparing Figures 8, 10 and Figure 11, it can be seen that the adaptive grid correctly captures 
the time dependent shape and location of the shock wave and the vortex. The adaptive solution 
captures a crisp shock wave that has bending and thickness that is comparable to that of the 
fine stationary grid solution even though the adaptive solution uses significantly fewer grids 
points. 

The temporal tracking of the adaptive grid is further illustrated in Figures 12, 13 and 14. In 
these Figures, the normalized pressure is plotted along the bottom wall, the channel centreline, 
and along the top wall at eleven time levels from t=0 to t = 1.00 (∆t=0.10). The 'o' on the 
pressure plots indicates the location of the cell centres and the pressure profiles corresponding 
to the solutions illustrated in Figure 8 are highlighted. From these plots the temporal evolution 
of the solution can be discerned. In addition, these plots provide a visual demonstration of the 
adaptive grid tracking the time dependent location of the severe solution behaviour. 

The numerical shock width and relative shock location along the top and bottom channel 
walls at eleven time levels are plotted in Figures 15 and 16. To facilitate making quantitative 
comparisons, in the following we have assumed that the very fine grid solution is the 'exact' 
solution to the problem. In Figure 15 the shock width is normalized by the shock width of the 
very find stationary grid solution. Plotted in Figure 16 is the difference in the shock location 
relative to that of the very find stationary grid solution, normalized by the channel width. 
Comparing Figures 15 and 16 again demonstrates the good agreement between the adaptive 
and stationary grid solutions. In Figure 15 it can be seen that during the time that the shock is 
passing over the vortex core (0.40 0.65), the adaptive grid produces a thiner numerical 
shock than occurs on the fine stationary grid. In Figure 16, note that the time dependent shock 
location agrees with the shock location of the 500x120 cell solution to within ±4/100 of 1%. 

Illustrated in Figure 17 is the time history of the relative error in the density fields. The relative 
error is computed at specified time levels as the L2 norm of the difference in the density of the 
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very fine stationary grid and, respectively, the adaptive and fine stationary grid solutions. The L2 
values are determined using bilinear interpolation to transfer the density of the 500 x 120 cell 
solution onto the 80 x 64 adaptive grid and the 300 x 120 stationary grid. Comparing Figure 15 
and 17, it can be seen that for the time interval when the shock passes over the vortex, the 
thinner shock captured by the adaptive solution results in a more accurate solution than occurs 
for the fine stationary grid solution, and approaches the accuracy achieved on the very fine 
grid. For the time intervals before and after the interaction, the error in the adaptive solution 
is slightly greater than that of the fine stationary grid. Over the full time period of the simulation, 
the error in the adaptive solution is roughly comparable to that of the fine grid solution. 
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Table 2 Comparison of shock vortex solution properties 

Solution 

500 x 120 Stationary 
300 x 120 Stationary 
80 x 64 Adaptive 

Grid cells† 

1.00 
0.60 
0.09 

1.3288 
1.3289 
1.3285 

Xt
5* 

1.2761 
1.2767 
1.2767 

Time steps† 

1.00 
0.66 
0.79 

CPU† 

1.00 
0.40 
0.18 

*Shock wave location on bottom (b) and top (t) channel wall at t = 1.00 
†Number of grid cells, time steps, and CPU time (CPU) normalized by corresponding values for 500x120 cell solution 

Listed in Table 2 are the number of time steps and CPU time used to compute the adaptive 
and stationary grid solutions. In the temporal coupling routine we have used p=10, resulting 
in 42 sequences of the 10 step procedure. On average, the full grid solution is integrated for 
about 19 time steps on each adaptive grid. The number of time steps required for the adaptive 
solution is slightly greater than that of the fine grid solution and slightly smaller than that of 
the very fine grid solution; the adaptive solution requires such a large number of time steps due 
to the small grid cells created by the adaptive grid at the shock wave and the CFL constraint 
in the explicit time integration scheme. At present we achieve a little over 50% savings in CPU 
time as compared to the fine stationary grid solution which, over the full time period of the 
simulation, has a L2 error that is roughly comparable to that of the adaptive solution. 

In the adaptive solution, the percentage of the total CPU time spent in the provisional solution 
(STEP 1-6), grid generation (STEP 7), conservative rezoning (STEP 8) and full grid solution 
(STEP 9) stages are 6%, 7%, 46%, and 41% respectively. These percentages highlight two 
items. First, and most important, it can be seen that the CPU time spent in the (coarse grid) 
provisional solution stage and the grid generation stage is relatively small in comparison to the 
CPU time used in the full grid solution stage. Second, the conservature rezoning algorithm 
requires a relatively large portion of the solution time. The large amount of time consumed by 
the conservative rezoning method is due in part to the large number of computations that it 
requires and, to a lesser extent, an inefficient computer implementation of the rezoning algorithm. 
To provide some perspective, if the adaptive solution were computed using bilinear interpolation 
instead of conservative rezoning for the static remesh in STEP 8, then the relative CPU time 
to compute the solution would be about 0.10 and the percentage of CPU time spent in the 
provisional, grid generation, solution interpolation, and full grid solution stages would be 11%, 
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12%, 4%, and 73% respectively. However, as noted in the section describing the temporal 
coupling method, using bilinear interpolation for the static remesh step results in a noticeable 
loss in solution accuracy. 

To summarize, the shock vortex tests demonstrate the ability of our adaptive solution method 
to capture an unsteady solution that is comparable in accuracy to a solution computed on a 
stationary grid containing significantly more grid points. In addition, these tests demonstrate 
the ability of our adaptive grid generator to track the time dependent location and shape of 
multiple solution features. 

CONCLUSIONS 
An adaptive grid method has been described that can be used to compute time accurate solutions 
of unsteady two-dimensional flow problems. A technique that treats the adaptive data as a 
vector function rather than a scalar function has been presented that improves the ability to 
adapt the grid to multiple solution features. A temporal coupling routine has been described 
for linking the adaptive grid and a stationary grid flow solver in such a way that the grid does 
not lag the solution in time. Using a coarse grid during the prediction stage has been demonstrated 
to provide sufficient information to generate the new grid. 

The temporal coupling utilizes a static remesh to avoid having to modify the flow solver to 
include a grid velocity capability. The static remesh is performed with a second order conservative 
rezoning method in order to correctly capture the time dependent location of shock waves. The 
feasibility of the method has been demonstrated through numerical tests for a one-dimensional 
shock tube and a two-dimensional shock vortex problem. 

Comparisons of the adaptive solutions with theoretical solutions and numerical solutions 
computed on stationary grids have demonstrated (a) the good temporal tracking of the solution 
by the adaptive grid, and (b) that our adaptive method can capture an unsteady solution to a 
fairly high degree of accuracy while using a grid containing only a modest number of points. 
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